diff options
Diffstat (limited to 'lib/oeqa/runtime/files/dldt-inference-engine/classification_sample.py')
-rw-r--r-- | lib/oeqa/runtime/files/dldt-inference-engine/classification_sample.py | 135 |
1 files changed, 0 insertions, 135 deletions
diff --git a/lib/oeqa/runtime/files/dldt-inference-engine/classification_sample.py b/lib/oeqa/runtime/files/dldt-inference-engine/classification_sample.py deleted file mode 100644 index 1906e9fe..00000000 --- a/lib/oeqa/runtime/files/dldt-inference-engine/classification_sample.py +++ /dev/null | |||
@@ -1,135 +0,0 @@ | |||
1 | #!/usr/bin/env python3 | ||
2 | """ | ||
3 | Copyright (C) 2018-2019 Intel Corporation | ||
4 | |||
5 | Licensed under the Apache License, Version 2.0 (the "License"); | ||
6 | you may not use this file except in compliance with the License. | ||
7 | You may obtain a copy of the License at | ||
8 | |||
9 | http://www.apache.org/licenses/LICENSE-2.0 | ||
10 | |||
11 | Unless required by applicable law or agreed to in writing, software | ||
12 | distributed under the License is distributed on an "AS IS" BASIS, | ||
13 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
14 | See the License for the specific language governing permissions and | ||
15 | limitations under the License. | ||
16 | """ | ||
17 | from __future__ import print_function | ||
18 | import sys | ||
19 | import os | ||
20 | from argparse import ArgumentParser, SUPPRESS | ||
21 | import cv2 | ||
22 | import numpy as np | ||
23 | import logging as log | ||
24 | from time import time | ||
25 | from openvino.inference_engine import IENetwork, IECore | ||
26 | |||
27 | |||
28 | def build_argparser(): | ||
29 | parser = ArgumentParser(add_help=False) | ||
30 | args = parser.add_argument_group('Options') | ||
31 | args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.') | ||
32 | args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.", required=True, | ||
33 | type=str) | ||
34 | args.add_argument("-i", "--input", help="Required. Path to a folder with images or path to an image files", | ||
35 | required=True, | ||
36 | type=str, nargs="+") | ||
37 | args.add_argument("-l", "--cpu_extension", | ||
38 | help="Optional. Required for CPU custom layers. " | ||
39 | "MKLDNN (CPU)-targeted custom layers. Absolute path to a shared library with the" | ||
40 | " kernels implementations.", type=str, default=None) | ||
41 | args.add_argument("-d", "--device", | ||
42 | help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL, MYRIAD or HETERO: is " | ||
43 | "acceptable. The sample will look for a suitable plugin for device specified. Default " | ||
44 | "value is CPU", | ||
45 | default="CPU", type=str) | ||
46 | args.add_argument("--labels", help="Optional. Path to a labels mapping file", default=None, type=str) | ||
47 | args.add_argument("-nt", "--number_top", help="Optional. Number of top results", default=10, type=int) | ||
48 | |||
49 | return parser | ||
50 | |||
51 | |||
52 | def main(): | ||
53 | log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) | ||
54 | args = build_argparser().parse_args() | ||
55 | model_xml = args.model | ||
56 | model_bin = os.path.splitext(model_xml)[0] + ".bin" | ||
57 | |||
58 | # Plugin initialization for specified device and load extensions library if specified | ||
59 | log.info("Creating Inference Engine") | ||
60 | ie = IECore() | ||
61 | if args.cpu_extension and 'CPU' in args.device: | ||
62 | ie.add_extension(args.cpu_extension, "CPU") | ||
63 | # Read IR | ||
64 | log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin)) | ||
65 | net = IENetwork(model=model_xml, weights=model_bin) | ||
66 | |||
67 | if "CPU" in args.device: | ||
68 | supported_layers = ie.query_network(net, "CPU") | ||
69 | not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] | ||
70 | if len(not_supported_layers) != 0: | ||
71 | log.error("Following layers are not supported by the plugin for specified device {}:\n {}". | ||
72 | format(args.device, ', '.join(not_supported_layers))) | ||
73 | log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " | ||
74 | "or --cpu_extension command line argument") | ||
75 | sys.exit(1) | ||
76 | |||
77 | assert len(net.inputs.keys()) == 1, "Sample supports only single input topologies" | ||
78 | assert len(net.outputs) == 1, "Sample supports only single output topologies" | ||
79 | |||
80 | log.info("Preparing input blobs") | ||
81 | input_blob = next(iter(net.inputs)) | ||
82 | out_blob = next(iter(net.outputs)) | ||
83 | net.batch_size = len(args.input) | ||
84 | |||
85 | # Read and pre-process input images | ||
86 | n, c, h, w = net.inputs[input_blob].shape | ||
87 | images = np.ndarray(shape=(n, c, h, w)) | ||
88 | for i in range(n): | ||
89 | image = cv2.imread(args.input[i]) | ||
90 | if image.shape[:-1] != (h, w): | ||
91 | log.warning("Image {} is resized from {} to {}".format(args.input[i], image.shape[:-1], (h, w))) | ||
92 | image = cv2.resize(image, (w, h)) | ||
93 | image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW | ||
94 | images[i] = image | ||
95 | log.info("Batch size is {}".format(n)) | ||
96 | |||
97 | # Loading model to the plugin | ||
98 | log.info("Loading model to the plugin") | ||
99 | exec_net = ie.load_network(network=net, device_name=args.device) | ||
100 | |||
101 | # Start sync inference | ||
102 | log.info("Starting inference in synchronous mode") | ||
103 | res = exec_net.infer(inputs={input_blob: images}) | ||
104 | |||
105 | # Processing output blob | ||
106 | log.info("Processing output blob") | ||
107 | res = res[out_blob] | ||
108 | log.info("Top {} results: ".format(args.number_top)) | ||
109 | if args.labels: | ||
110 | with open(args.labels, 'r') as f: | ||
111 | labels_map = [x.split(sep=' ', maxsplit=1)[-1].strip() for x in f] | ||
112 | else: | ||
113 | labels_map = None | ||
114 | classid_str = "classid" | ||
115 | probability_str = "probability" | ||
116 | for i, probs in enumerate(res): | ||
117 | probs = np.squeeze(probs) | ||
118 | top_ind = np.argsort(probs)[-args.number_top:][::-1] | ||
119 | print("Image {}\n".format(args.input[i])) | ||
120 | print(classid_str, probability_str) | ||
121 | print("{} {}".format('-' * len(classid_str), '-' * len(probability_str))) | ||
122 | for id in top_ind: | ||
123 | det_label = labels_map[id] if labels_map else "{}".format(id) | ||
124 | label_length = len(det_label) | ||
125 | space_num_before = (len(classid_str) - label_length) // 2 | ||
126 | space_num_after = len(classid_str) - (space_num_before + label_length) + 2 | ||
127 | space_num_before_prob = (len(probability_str) - len(str(probs[id]))) // 2 | ||
128 | print("{}{}{}{}{:.7f}".format(' ' * space_num_before, det_label, | ||
129 | ' ' * space_num_after, ' ' * space_num_before_prob, | ||
130 | probs[id])) | ||
131 | print("\n") | ||
132 | log.info("This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n") | ||
133 | |||
134 | if __name__ == '__main__': | ||
135 | sys.exit(main() or 0) | ||